#

Inside Aztec

Inside
Aztec

purple_2
Aztec Network
6 Dec
xx min read

$AZTEC TGE: Next Steps For Holders

Everything you need to know about withdrawing, staking, and voting with your $AZTEC tokens

The TL;DR: 

The $AZTEC token sale was conducted entirely onchain to maximize transparency and fair distribution. Next steps for holders are as follows:

  1. Step 1: Create your Token Vault on the sale website. Your Token Vault will keep your tokens secure on Ethereum, keep them non-transferable until TGE, allow you to stake/delegate/participate in governance, and then withdraw them to your wallet after TGE.
  1. Step 2: Staking and Earning Block Rewards. If you have more than 200,000 tokens, you can start staking today on the staking dashboard
  1. Step 3: Token sale participants can vote for TGE as early as February 11th, 2026, at which 100% of tokens from the sale become transferable, and a Uniswap V4 pool goes live. 

The $AZTEC token sale has come to a close– the sale was conducted entirely onchain, and the power is now in your hands. Over 16.7k people participated, with 19,476 ETH raised. A huge thank you to our community and everyone who participated– you all really showed up for privacy. 50% of the capital committed has come from the community of users, testnet operators and creators!

Now that you have your tokens, what’s next? This guide walks you through the next steps leading up to TGE, showing you how to withdraw, stake, and vote with your tokens.

Step 1: Creating a Token Vault 

The $AZTEC sale was conducted onchain to ensure that you have control over your own tokens from day 1 (even before tokens become transferable at TGE). 

The team has no control over your tokens. You will be self-custodying them in a smart contract known as the Token Vault on the Ethereum mainnet ahead of TGE. 

Your Token Vault contract will: 

  • Keep your tokens secure on the Ethereum mainnet.
  • Ensure tokens remain non-transferable until TGE.
  • Allows you to stake, delegate, and take part in governance.
  • After TGE, you can withdraw your tokens to your wallet.

To create and withdraw your tokens to your Token Vault, simply go to the sale website and click on ‘Create Token Vault.’ Any unused ETH from your bids will be returned to your wallet in the process of creating your Token Vault. 

Step 2: Staking and Earning Block Rewards 

If you have 200,000+ tokens, you are eligible to start staking and earning block rewards today. 

You can stake by connecting your Token Vault to the staking dashboard, just select a provider to delegate your stake. Alternatively, you can run your own sequencer node.

If your Token Vault holds 200,000+ tokens, you must stake in order to withdraw your tokens after TGE. If your Token Vault holds less than 200,000 tokens, you can withdraw without any additional steps at TGE

Fractional staking for anyone with less than 200,000 tokens is not currently supported, but multiple external projects are already working to offer this in the future. 

Step 3: TGE 

TGE is triggered by an onchain governance vote, which can happen as early as February 11th, 2026. 

At TGE, 100% of tokens from the token sale will be transferable. Only token sale participants and genesis sequencers can participate in the TGE vote, and only tokens purchased in the sale will become transferrable. 

How does the voting process work? 

Community members discuss potential votes on the governance forum. If the community agrees, sequencers signal to start a vote with their block proposals. Once enough sequencers agree, the vote goes onchain for eligible token holders. 

Voting lasts 7 days, requires participation of at least 100,000,000 $AZTEC tokens, and passes if 2/3 vote yes.

What happens when the vote passes? 

Following a successful yes vote, anyone can execute the proposal after a 7-day execution delay, triggering TGE. 

At TGE, the following tokens will be 100% unlocked and available for trading: 

  • All tokens in Token Vaults that belong to token sale participants.
  • Accumulated block rewards for anyone staking.
  • Uniswap V4 pool. This pool will have 273,000,000 $AZTEC tokens and a matching ETH amount at the final clearing price. 

Join us Thursday, December 11th at 3 pm UTC for the next Discord Town Hall–AMA style on next steps for token holders. Follow Aztec on X to stay up to date on the latest developments.

Most Recent
Aztec Network
13 Nov
xx min read

The ticker is $AZTEC

We invented the math. We wrote the language. Proved the concept and now, we’re opening registration and bidding for the $AZTEC token today, starting at 3 pm CET. 

The community-first distribution offers a starting floor price based on a $350 million fully diluted valuation (FDV), representing an approximate 75% discount to the implied network valuation (based on the latest valuation from Aztec Labs’ equity financings). The auction also features per-user participation caps to give community members genuine, bid-clearing opportunities to participate daily through the entirety of the auction. 

How to Check Eligibility and Submit Your Bid 

The token auction portal is live at: sale.aztec.network

  • This is the only valid link to the $AZTEC token auction site. Be cautious of phishing scams. No one from the Aztec team will ever contact you directly for seed phrase or private keys. 
  • Visit the site to verify your eligibility and mint a soul-bound NFT that confirms your participation rights. 
  • We have incorporated zero-knowledge proofs into the sale smart contracts by using ZKPassport's Noir circuits to ensure compliant sanctions checks without risking the privacy of our users. 
  • Registration and bidding for early contributors start today, November 13th, at 3 PM CET, with early contributors receiving one day of exclusive access before bidding opens to the general public.
  • The public auction will run from December 2nd, 2025, to December 6th, 2025, at which point tokens can be withdrawn and staked.

Why Are We Doing This? 

We’ve taken the community access that made the 2017 ICO era great and made it even better. 

For the past several months, we've worked closely with Uniswap Labs as core contributors on the CCA protocol, a set of smart contracts that challenge traditional token distribution mechanisms to prioritize fair access, permissionless, on-chain access to community members and the general public pre-launch. This means that on day 1 of the unlock, 100% of the community's $AZTEC tokens will be unlocked.

This model is values-aligned with our Core team and addresses the current challenges in token distribution, where retail participants often face unfair disadvantages against whales and institutions that hold large amounts of money. 

Early contributors and long-standing community members, including genesis sequencers, OG Aztec Connect users, network operators, and community members, can start bidding today, ahead of the public auction, giving those who are whitelisted a head start and early advantage for competitive pricing. Community members can participate by visiting the token sale site to verify eligibility and mint a soul-bound NFT that confirms participation rights. 

To read more about Aztec’s fair-access token sale, visit the economic and technical whitepapers and the token regulatory report.

Discount Price Disclaimer: Any reference to a prior valuation or percentage discount is provided solely to inform potential purchasers of how the initial floor price for the token sale was calculated. Equity financing valuations were determined under specific circumstances that are not comparable to this offering. They do not represent, and should not be relied upon as, the current or future market value of the tokens, nor as an indication of potential returns. The price of tokens may fluctuate substantially, the token may lose its value in part or in full, and purchasers should make independent assessments without reliance on past valuations. No representation or warranty is made that any purchaser will achieve profits or recover the purchase price.

Information for Persons in the UK: This communication is directed only at persons outside the UK. Persons in the UK are not permitted to participate in the token sale and must not act upon this communication.

MiCA Disclaimer: Any crypto-asset marketing communications made from this account have not been reviewed or approved by any competent authority in any Member State of the European Union. Aztec Foundation as the offeror of the crypto-asset is solely responsible for the content of such crypto-asset marketing communications. The Aztec MiCA white paper has been published and is available here. The Aztec Foundation can be contacted at hello@aztec.foundation or +41 41 710 16 70. For more information about the Aztec Foundation, visit https://aztec.foundation.

Aztec Network
28 Oct
xx min read

Your Favorite DeFi Apps, Now With Privacy

Every time you swap tokens on Uniswap, deposit into a yield vault, or vote in a DAO, you're broadcasting your moves to the world. Anyone can see what you own, where you trade, how much you invest, and when you move your money.

Tracking and analysis tools like Chainalysis and TRM are already extremely advanced, and will only grow stronger with advances in AI in the coming years. The implications of this are that the ‘pseudo-anonymous’ wallets on Ethereum are quickly becoming linked to real-world identities. This is concerning for protecting your personal privacy, but it’s also a major blocker in bringing institutions on-chain with full compliance for their users. 

Until now, your only option was to abandon your favorite apps and move to specialized privacy-focused apps or chains with varying degrees of privacy. You'd lose access to the DeFi ecosystem as you know it now, the liquidity you depend on, and the community you're part of. 

What if you could keep using Uniswap, Aave, Yearn, and every other app you love, but with your identity staying private? No switching chains. Just an incognito mode for your existing on-chain life? 

If you’ve been following Aztec for a while, you would be right to think about Aztec Connect here, which was hugely popular with $17M TVL and over 100,000 active wallets, but was sunset in 2024 to focus on bringing a general-purpose privacy network to life. 

Read on to learn how you’ll be able to import privacy to any L2, using one of the many privacy-focused bridges that are already built. 

The Aztec Network  

Aztec is a fully decentralized, privacy-preserving L2 on Ethereum. You can think of Aztec as a private world computer with full end-to-end programmable privacy. A private world computer extends Ethereum to add optional privacy at every level, from identity and transactions to the smart contracts themselves. 

On Aztec, every wallet is a smart contract that gives users complete control over which aspects they want to make public or keep private. 

Aztec is currently in Testnet, but will have multiple privacy-preserving bridges live for its mainnet launch, unlocking a myriad of privacy preserving features.

Bringing Privacy to You

Now, several bridges, including Wormhole, TRAIN, and Substance, are connecting Aztec to other chains, adding a privacy layer to the L2s you already use. Think of it as a secure tunnel between you and any DeFi app on Ethereum, Arbitrum, Base, Optimism, or other major chains.

Here's what changes: You can now use any DeFi protocol without revealing your identity. Furthermore, you can also unlock brand new features that take advantage of Aztec’s private smart contracts, like private DAO voting or private compliance checks. 

Here's what you can do:

  • Use DeFi without revealing your portfolio: trade on Uniswap or deposit into Yearn without broadcasting your strategy to the world
  • Donate to causes without being tracked: support projects on Base without linking donations to your identity
  • Vote in DAOs without others seeing your choices: participate in governance on Arbitrum while keeping your votes private
  • Prove you're legitimate without doxxing yourself: pass compliance checks or prove asset ownership without revealing which specific assets you hold
  • Access exclusive perks without revealing which NFTs you own: unlock token-gated content on Optimism without showing your entire collection

The apps stay where they are. Your liquidity stays where it is. Your community stays where it is. You just get a privacy upgrade.

How It Actually Works 

Let's follow Alice through a real example.

Alice wants to invest $1,000 USDC into a yield vault on Arbitrum without revealing her identity. 

Step 1: Alice Sends Funds Through Aztec

Alice moves her funds into Aztec's privacy layer. This could be done in one click directly in the app that she’s already using if the app has integrated one of the bridges. Think of this like dropping a sealed envelope into a secure mailbox. The funds enter a private space where transactions can't be tracked back to her wallet.

Step 2: The Funds Arrive at the DeFi Vault

Aztec routes Alice's funds to the Yearn vault on Arbitrum. The vault sees a deposit and issues yield-earning tokens. But there's no way to trace those tokens back to Alice's original wallet. Others can see someone made a deposit, but they have no idea who.

Step 3: Alice Gets Her Tokens Back Privately

The yield tokens arrive in Alice's private Aztec wallet. She can hold them, trade them privately, or eventually withdraw them, without anyone connecting the dots.

Step 4: Alice Earns Yield With Complete Privacy

Alice is earning yield on Arbitrum using the exact same vault as everyone else. But while other users broadcast their entire investment strategy, Alice's moves remain private. 

The difference looks like this:

Without privacy: "Wallet 0x742d...89ab deposited $5,000 into Yearn vault at 2:47 PM"

With Aztec privacy: "Someone deposited funds into Yearn vault" (but who? from where? how much? unknowable).

In the future, we expect apps to directly integrate Aztec, making this experience seamless for you as a user. 

The Developers Behind the Bridges 

While Aztec is still in Testnet, multiple teams are already building bridges right now in preparation for the mainnet launch.

Projects like Substance Labs, Train, and Wormhole are creating connections between Aztec and major chains like Optimism, Unichain, Solana, and Aptos. This means you'll soon have private access to DeFi across nearly every major ecosystem.

Aztec has also launched a dedicated cross-chain catalyst program to support developers with grants to build additional bridges and apps. 

Unifying Liquidity Across Ethereum L2s

L2s have sometimes received criticism for fragmenting liquidity across chains. Aztec is taking a different approach. Instead, Aztec is bringing privacy to the liquidity that already exists. Your funds stay on Arbitrum, Optimism, Base, wherever the deepest pools and best apps already live. Aztec doesn't compete for liquidity, it adds privacy to existing liquidity.

You can access Uniswap's billions in trading volume. You can tap into Aave's massive lending pools. You can deposit into Yearn's established vaults, all without moving liquidity away from where it's most useful.

The Future of Private DeFi

We’re rolling out a new approach to how we think about L2s on Ethereum. Rather than forcing users to choose between privacy and access to the best DeFi applications, we’re making privacy a feature you can add to any protocol you're already using. As more bridges go live and applications integrate Aztec directly, using DeFi privately will become as simple as clicking a button—no technical knowledge required, no compromise on the apps and liquidity you depend on.

While Aztec is currently in testnet, the infrastructure is rapidly taking shape. With multiple bridge providers building connections to major chains and a dedicated catalyst program supporting developers, the path to mainnet is clear. Soon, you'll be able to protect your privacy while still participating fully in the Ethereum ecosystem. 

If you’re a developer and want a full technical breakdown, check out this post. To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Aztec Network
22 Oct
xx min read

Bringing Private Over-The-Counter (OTC) Swaps to Crypto

Transparent OTC Trades Are Holding the Industry Back

OTC trading is fundamental to how crypto markets function. It enables better price negotiations than what you'll find on public order books and facilitates trading of illiquid assets that barely exist on exchanges. Without OTC markets, institutional crypto trading would be nearly impossible. But here's the massive problem: every single OTC transaction leaves a permanent, public trace. 

Let's say you're a fund manager who needs to sell 1,000 BTC for USDC on Base. In a traditional OTC trade, your Bitcoin leaves your wallet and becomes visible to everyone on Bitcoin's blockchain. Through cross-chain settlement, USDC then arrives in your Base wallet, which is also visible to everyone on Base's blockchain. 

At this point, block explorers and analytics firms can connect these transactions through pattern analysis. As a result, your trading patterns, position sizes, and timing become public data, exposing your entire strategy.

This isn't just about privacy; transparent OTC creates serious operational and strategic risks. These same concerns have moved a significant portion of traditional markets to private off-exchange trades. 

Why Traditional Finance Moved to Private Markets

In TradFi, institutions don't execute large trades on public order books for many reasons. In fact, ~13% of all stocks in the US are now traded in dark pools, and more than 50% of trades are now off-exchange. 

They use private networks, dark pools, and OTC desks specifically because:

  • Strategy Protection: Your competitors can't front-run your moves
  • Better Execution: No market impact from revealing large positions
  • Regulatory Compliance: Meet reporting requirements without public disclosure
  • Operational Security: Protect proprietary trading algorithms and relationships

While OTC trading is already a major part of the crypto industry, without privacy, true institutional participation will never be practical. 

Now, Aztec is making this possible. 

Moving Whale-Sized Bags Privately on Aztec

We built an open-source private OTC trading system using Aztec Network's programmable privacy features. Because Aztec allows users to have private, programmable, and composable private state, users aren’t limited to only owning and transferring digital assets privately, but also programming and composing them via smart contracts.

If you’re new to Aztec, you can think of the network as a private world computer, with full end-to-end programmable privacy. A private world computer extends Ethereum to add optional privacy at every level, from identity and transactions to the smart contracts themselves. 

To build a private OTC desk, we leveraged all these tools provided by Aztec to implement a working proof of concept. Our private OTC desk is non-custodial and leverages private smart contracts and client-side proving to allow for complete privacy of the seller and buyer of the OTC.

How It Actually Works

For Sellers:

  1. Deploy a private escrow contract (only you know it exists at this stage)
  2. Initialize contract and set the terms (asset type, quantity, price)
  3. Deposit your assets into the contract
  4. After it’s been deployed, call a private API (the order book service)

For Buyers:

  1. Discover available orders through our privacy-preserving API
  2. Select trades that match your criteria
  3. Complete the seller's partial note with your payment
  4. Execute atomic swap – you get their assets, they get your payment

The Magic: Partial Notes are the technical breakthrough that make collaborative, asynchronous private transactions possible. Sellers create incomplete payment commitments that buyers can finish without revealing the seller's identity. It's like leaving a blank check that only the right person can cash, but neither party knows who the other is.

Privacy guarantees include: 

  • Complete Privacy: Neither party knows who they're trading with
  • Strategy Protection: Your trading patterns stay private
  • Market Impact Minimization: No public signals about large movements
  • Non-custodial: Direct peer-to-peer settlement, no intermediaries

Key Innovations

Private Contract Deployment: Unlike public decentralized exchanges where smart contracts are visible on the blockchain, the escrow contracts in this system are deployed privately, meaning that only the participants involved in the transaction know these contracts exist.

Partial Note Mechanism: This system uses cryptographic primitives that enable incomplete commitments to be finalized or completed by third parties, all while preventing those third parties from revealing or accessing any pre-existing information that was part of the original commitment.

Privacy-Preserving Discovery: The orderflow service maintains knowledge of aggregate trading volumes and overall market activity, but it cannot see the details of individual traders, including their specific trade parameters or personal identities.

Atomic Execution: The smart contract logic is designed to ensure that both sides of a trade occur simultaneously in a single atomic operation, meaning that if any part of the transaction fails, the entire transaction is rolled back and neither party's assets are transferred.

Build with us!

Our prototype for this is open-sourced here, and you can read about the proof of concept directly from the developer here

We're inviting teams to explore, fork, and commercialize this idea. The infrastructure for private institutional trading needs to exist, and Aztec makes it possible today. Whether you're building a private DEX, upgrading your OTC desk, or exploring new DeFi primitives, this codebase is your starting point. 

The traditional finance world conducts trillions in private OTC trades. It's time to bring that scale to crypto, privately.

To stay up to date with the latest updates for network operators, join the Aztec Discord and follow Aztec on X.

Aztec Network
15 Oct
xx min read

Your Private Money Yearns for a Private Economy

Watch this: Alice sends Zcash. Bob receives USDC on Aztec. Nobody, not even the system facilitating it, knows who Alice or Bob are.

And Bob can now do something with that money. Privately.

This is the connection between private money and a private economy where that money can actually be used.

Zcash has already achieved something monumental: truly private money. It’s the store of value that Bitcoin promised (but made transparent). Like, digital gold that actually stays hidden.

But here's the thing about gold - you don't buy coffee with gold bars. You need an economy where that value can flow, work, and grow. Privately.

Money Under the Mattress

While other projects are trying to bolt privacy onto existing chains as an afterthought, Zcash is one of the oldest privacy projects in Web3. It's achieved what dozens of projects are still chasing: a truly private store of value.

Total Shielded ZEC Value (USD): Sep 16 - Oct 14 | Source: zkp.baby/

This is critical infrastructure for freedom. The ability to store value privately is a fundamental right, a hedge against surveillance, and a given when using cash. We need a system that provides the same level of privacy guarantees as cash. Right now, there's over $1.1 billion sitting in Zcash's shielded pool, private wealth that's perfectly secure but essentially frozen.

Why frozen? Because the moment that shielded $ZEC tries to do anything beyond basic transfers: earn yield, get swapped for stablecoins, enter a liquidity pool, it must expose itself. The privacy in this format is destroyed.

This isn't Zcash's failure. They built exactly what they set out to build: the world's best private store of value. The failure is that the rest of crypto hasn't built where that value can actually work.

The Privacy Landscape Has an Imbalance

What happens when you want to do more than just send money? What happens when you want privacy after you transfer your money?

Private Digital Money (i.e., “Transfer Privacy,” largely solved by Zcash):

  • Zcash: est. 2016
  • Everyone else: building variants of digital money at the transaction or identity level
    • Monero
    • Ethereum privacy pools
    • 0xbow
    • Payy
    • Every privacy stablecoin project
    • Every confidential L2
    • Every privacy project you've ever heard of

Private World Computer (i.e., After-the-Transfer Privacy):

  • Aztec

Everyone else is competing to build better ways to hide money. Zcash has already built the private store of value, and Aztec has built the only way to use hidden money.

The Locked Liquidity Problem

Here's the trillion-dollar question: What good is private money if you can't use it?

Right now, Zcash's shielded pool contains billions in value. This is money in high-security vaults. But unlike gold in vaults that can be collateralized, borrowed against, or deployed, this private value just sits there.

Every $ZEC holder faces two impossible choices:

  1. Keep it shielded and forfeit all utility
  2. Unshield it to use it and forfeit all privacy

Our demo breaks this false sense of choice. For the first time, shielded value can move to a place where it remains private AND becomes useful.

The Private World Computer

Here's how you can identify whether you’re dealing with a private world computer, or just private digital money:

Without a private world computer (every other privacy solution):

  • Receive salary privately → Can't invest it
  • Store savings privately → Can't earn yield
  • Send money privately → Recipient can't use it privately

With a private world computer (only Aztec):

  • Receive salary privately → Invest it privately
  • Store savings privately → Earn APY privately
  • Send payment privately → Recipient spends it privately

This is basic financial common sense. Your money should grow. It should work. It should be useful.

The technical reality is that this requires private smart contracts. Aztec is building the only way to interact privately with smart contracts. These smart contracts themselves can remain completely hidden. Your private money can finally do what money is supposed to do: work for you.

What We Actually Built

Our demo proves these two worlds can connect:

  1. The Vault: Zcash
  2. The Engine: Aztec (where private money becomes useful)

We built the bridge between storing privately and doing privately.

The technical innovation - "partial notes" - are like temporary lockboxes that self-destruct after one use. Money can be put privately into these lockboxes, and a key can be privately handed to someone to unlock it. No one knows who put the money in, where the key came from, or who uses the key. You can read more about how they work here. But what matters isn't the mechanism. 

What matters is that Alice's Zcash can become Bob's working capital on Aztec without anyone knowing about either of them.

As a result, Bob receives USDC that he can:

  • Earn yield on
  • Trade with
  • Pay suppliers with
  • Build a business on
  • All privately

Why This Required Starting from Scratch (and 8 years of building)

You can't bolt privacy onto existing systems. You can't take Ethereum and make it private. You can't take a transparent smart contract platform and add privacy as a feature.

Aztec had to be built from the ground up as a private world computer because after-the-transfer privacy requires rethinking everything:

  • How state is managed
  • How contracts execute
  • How proofs are generated
  • How transactions are ordered

This is why there's only one name building fully private smart contracts. From the beginning, Aztec has been inspired by the work Zcash has done to create a private store of value. That’s what led to the vision for a private world computer.

Everyone else is iterating on the same transfer privacy problem. Aztec solves a fundamentally different problem.

The Obvious Future

Once you see it, you can't unsee it: Privacy without utility is only the first step.

Every privacy project will eventually need what Aztec built. Because their users will eventually ask: "Okay, my money is private... now what?"

  • Zcash users will want their $ZEC to earn yield
  • Privacy pool users will want to do more than just mix
  • Private stablecoin users will want to actually… use their stablecoins

This demo that connects Zcash to Aztec is the first connection between the old world (private transfers) and the new world (private everything else).

What This Means

For Zcash Holders: Your shielded $ZEC can finally do something without being exposed.

For Developers: Stop trying to build better mattresses to hide money under. Start building useful applications on the only platform that keeps them private. 

For the Industry: The privacy wars are over. There's transfer privacy (solved by Zcash) and after-the-transfer privacy (just Aztec).

What’s Next? 

This demo is live. The code is open source. The bridge between private money and useful private money exists.

But this is just the beginning. Every privacy project needs this bridge. Every private payment network needs somewhere for those payments to actually be used.

We're not competing with transfer privacy. We're continuing it.

Your private money yearns for the private economy.

Welcome to after-the-transfer privacy. Welcome to Aztec.

Explore by Topic
Noir
Noir
8 Aug
xx min read

Unlocking the Future of Privacy: Join the Noir Research Campaign for Provable Emails

In the ever-evolving landscape of digital privacy, the power of Zero-Knowledge Proofs (ZKPs) is revolutionizing how we protect and prove information. Noir, a leading language for privacy-first programmable privacy, is at the forefront of this innovation and is calling on you to help us enhance provable emails using Noir. This research campaign (NCR#1), running from August 8th - 25th, 2024 presents a unique opportunity to push the boundaries of privacy while creating novel solutions for secure email verification.

Why Privacy-First, Provable Emails?

The rise of Programmable Cryptography and Zero-Knowledge Proofs offers unprecedented potential for trustless and private verification of information, cryptographically bridging data across silos. Imagine a world where you can prove ownership of an email address or an email received without revealing its content or personal details. This capability is not just a theoretical possibility, but a practical reality waiting to be unlocked through advanced research and development.

What We’re Looking For

Aztec Labs has been a strong supporter of this vision, particularly with the ZK Email team's pioneering work. As a part of these continued efforts, we invite researchers, developers, tech enthusiasts, and anyone with creative ideas to propose a two-month research plan that explores ways to leverage Noir (and Aztec) to augment this work and its broader vision.

We’re looking for proposals focused on building end-user-oriented projects, including MVPs. Proposals focused on building developer tooling and technical/cryptography research are also welcome as long as their relevance to zkEmail is clear.

Multiple submissions are welcomed, however, to be considered, your proposal must meet the following criteria:

  • Implementation in Noir: Your final implementation should include components written in Noir, if not fully in Noir.
  • Testing and Documentation: Ensure thorough testing and comprehensive documentation of your implementation.
  • Open Source: The final implementation must be open-sourced under a permissive license (e.g., MIT).

How to Submit Your Proposal

To participate, please head to our GitHub and submit your proposal using the following format:

  • Title
  • Summary
  • Methodology
  • Timeline and Deliverables
  • Team
  • Start Date
  • Questions

Proposal submissions are open now and will close on August 25th, 2024. Our selection committee will pick two proposals that will receive up to US$40,000 in grants. Winners will be announced before September 5th, 2024, via GitHub Discussions and X.

Click here to get started on your proposal today.

Audit Partners

We believe in the value of the real-world impact of top-tier research.

To ensure the security and quality of applying research outcomes, we’re onboarding audit partners to sponsor and provide auditing for the final implementations of selected proposals. Potential audit partners will be evaluated up to August 20th, 2024, and announced on GitHub by August 31st, 2024.

To learn more about how to get involved, please contact Savio or Lisa.

Start Tinkering

Join us in pioneering the future of privacy-first communication. Submit your proposal and be part of this transformative journey with Noir!

Aztec Network
Aztec Network
24 Jun
xx min read

Is Account Abstraction abstract enough?

Special thanks to Palla, James Zaki, and Emmanuel Batse for the review.

Disclaimer: if you’re familiar with Account Abstraction and are curious about how it works on Aztec, go right to the section “The most abstract Account Abstraction”.

Account Abstraction context

What is AA and why did the Ethereum community give it this name?

  • Initially, all Ethereum accounts were Externally Owned Accounts (EOAs), controlled by the user’s private key (i.e. whoever has the private key owns the account).
  • With the Ethereum evolution, it became clear that to make Ethereum accounts more flexible and unlock a number of use cases, we need to abstract some or all parts of the accounts. However, this is expected to happen without sacrificing decentralization or censorship resistance.
  • Among the use cases to be unlocked are account recovery, gas sponsorship, multichain accounts, and support of signatures other than ECDSA, such as more efficient signatures (e.g. Schnorr, BLS), or more user-friendly ones (e.g. smartphone secure enclave).
  • Among the account parts to be abstracted are authentication (“Who I am”), authorization (“What I am allowed to do”), replay protection, fee payment, and execution. But strictly speaking, if we abstract even one of them we already call it AA.
  • Today, when one is talking about AA, they mean abstracted verification logic. It can be abstracted up to the protocol level or to the smart contract level. In particular, it usually implies that accounts are controlled by smart contracts (i.e. a piece of code) that describe the verification logic.
  • By native AA, we mean that AA is implemented at the protocol level. As a rule, in this case, all the accounts on the network are smart contracts (i.e. no EOAs at all).
  • By non-native AA, we mean that AA is implemented at the smart-contract level. In this case, there might be both EOAs and accounts controlled by smart contracts.

Note: the second option is sometimes also referred to as “contract wallets” or “smart accounts”.

The story of Account Abstraction

AA on Ethereum

The discussions around AA on Ethereum started around 2017. There were a number of EIPs and ERCs proposing different versions of AA (e.g. EIP-86, suggesting abstraction of transaction origin and signature, EIP-1014, and EIP-2938) that were explored and discussed but ultimately rejected, so we won’t cover them in this piece.

The first ERC affiliated with AA that made it to Ethereum mainnet was ERC-4337 (deployed on Mainnet in March 2023). It introduced AA without any modifications to the core protocol. It achieved this by replicating the functionality of the transactions mempool in a higher-level system. Instead of transactions, users send UserOperation objects to relayers, and these relayers package a set of these objects into a single standard transaction that is sent to Ethereum nodes.

Since then, the community has argued whether ERC-4337 is the Ethereum AA endgame or not. Right now, there is a dispute around EIP-3074 in the next Ethereum protocol upgrade. It suggests AUTH and AUTHCALL opcodes, which allow EOAs to delegate execution to smart contracts. However, one should note that the transaction validity still relies on EOAs’ ECDSA signature (i.e. ECDSA signature becomes enshrined).

This EIP is not new and some ecosystem players have discussed it being complementary to ERC-4337. The core question is what’s the more urgent problem for Ethereum to solve – censorship-resistance (against EIP-3074) or user experience (for EIP-3074)?

Account Abstraction on L2s

As Ethereum follows the rollup-centric roadmap, we expect most activity to happen on Ethereum L2s. As L2s technically don’t depend on Ethereum, they can implement AA on their own by introducing appropriate opcodes.

Some L2s have chosen a native AA “feature” as one of their core value propositions and implemented native AA (among those zkSync, StarkNet, and Aztec). In particular, this means that a transaction can be initiated directly by a smart contract (i.e. without any reliance on EOA).

As a comparison, in ERC-4337, AA is not native, as there is a step in the tx flow where an EOA account is engaged (as a Bundler).

Source

As an alternative to enshrining AA in Ethereum, the Rollup Improvement Proposal (RIP) was proposed. RIP is a way to facilitate L2 standardization (not only around AA but around other L2 aspects as well). RIP-7560 is a native version of ERC-4337 for L2 chains currently under discussion. Check a series of RollCalls to learn more.

The most abstract Account Abstraction

While we talk about “arbitrary verification logic” describing the intuition behind AA, the logic is not really arbitrary. The verification logic (i.e. what can be checked as an authorization) is limited to make the verification time fast and bounded. That is the case for all chains where transaction validity is checked by the sequencer. Otherwise, it will cause UX downfall, whereas the main reason behind introducing AA is UX improvement.

On Aztec, there is no limitation on verification logic, as transaction validity check is executed client-side and a proof of validity is supplied to the sequencer. The sequencer only verifies the proof and this process is independent of the verification logic complexity.

This unlocks a whole universe of new use cases and optimization of existing ones. Whenever the dapp can benefit from moving expensive computations off-chain, Aztec AA will provide a unique chance for an optimization. That is to say, on traditional chains users pay for each executed opcode, hence more complex operations (e.g. alternative signature verification) are quite expensive. In the case of Aztec, it can be moved off-chain so that it becomes almost free. The user pays for the operations in terms of client-side prover time.

For example:

  • Multisig contract with an arbitrary number of parties that can verify any number of signatures for free.
  • Oracle contract with an arbitrary number of data providers that can verify any number of data entries for free.

However, one should note that if the verification logic depends on the public state and requires a public function call (e.g. checking the balance), this check will be executed by the sequencer and imply some limitations on the allowed complexity of verification logic. For those who prefer watching over reading, here is a talk, “Account Abstraction for a Private Network”, by Santiago Palladino (Palla).ConclusionAA is not a new topic, however, AA on private networks unlocks new capabilities for arbitrary verification logic, allowing for more complex logic as well as significant cost optimizations.  Check documentation to dive into the details of Aztec’s AA. And if you are up to join Aztec’s building pioneers – express your interest in this form. Sources

  • The website ERC-4337.
  • An article, “Why 4337 and 3074 authors are disagreeing, and who got it right”.
  • Notes on the Account Abstraction roadmap.
  • A talk, “Account Abstraction for a Private Network” by Palla.
Noir
Noir
24 Jun
xx min read

Announcing the Noir awardees of the inaugural EF ZK Grants Wave

Aztec Labs is committed to enabling developers to build with ZK and unlock the full potential of this transformative technology. To that end, we built Noir, an open source Domain Specific Language for safe and seamless construction of privacy-preserving ZK proofs. We fund tooling, libraries, and applications that make Noir more accessible and enjoyable for developers.

Earlier this year, the Ethereum Foundation announced the first ZK Grants Round, a cofunded proactive grants round to encourage research and development for Zero-Knowledge proofs and standards for ZK L2s. Aztec Labs contributed US$150,000 to the US$900,000 prize pool alongside other projects such as Polygon, Scroll, Taiko, and zkSync. We sponsored this initiativeas a part of our commitment to support builders who are advancing ZK across dimensions including research, performance, tooling, and applications.

We were thrilled to see submissions to the ZK Grants Round from both new and existing Noir contributors. In this post, we want to highlight the ZK Grants Wave awardees for the Noir ecosystem to showcase what the community is working on and provide inspiration for how you could contribute.

Plonky2 backend for ACIR

Team: @eryxcoop, @manastech

Noir is back-end agnostic and its Arithmetic Circuit Intermediate Representation (ACIR) can be integrated with different proving backends. This project will enable Noir users to prove and verify their programs with Plonky2 technology, unlocking more possibilities to develop blockchain and ZK infrastructure with Noir. Meanwhile, it will also allow Plonky2 users to benefit from Noir’s developer-friendly abstractions, tooling, and growing sets of libraries, lowering the barrier of entry to the proving technology.

Detecting Private Information Leakage in Zero-Knowledge Applications

Team: @schaliasosvons, @theosotir

Noir abstracts away underlying cryptography so it’s accessible to a broader developer base. However, one risk of these abstractions is unintentionally leaking private variable information. This tool will apply static analysis, taint tracking, input generation, and SMT solving to detect privacy leaks in Noir program designs. Noir users can leverage this easy to use framework and debugging tool to identify, analyze and amend such leakages in their projects.

ZK Benchmarks

Team: @wz__ht

Performance benchmarking varies across different languages and proving systems. This project aims to produce benchmarking suites, articles, and a website that compares and informs developers about characteristics, performance, and tradeoffs between Noir-compatible and other proving backends in the ZK ecosystem.

ZK Treesitter

Team: @wz__ht

Noir reduces barriers for developers to use ZK with its simple and familiar Rust-like syntax. But a solid developer experience is more than just language design. It also depends on a strong ecosystem of developer tooling. This project will offer treesitter grammars that unlock features like syntax highlighting and code formatting for the language in more development environments like Helix and Neovim – providing Noir developers with more flexibility and choice.

Onboard users to verifiable KYC

Team: Neoxham, Lakonema2000, @0x18a6

Noir tooling and libraries are created to support and enable application developers who solve problems using ZK. This team will leverage Noir to create an educational end-to-end example of verifiable Know Your Customer (KYC) with compliance checks, and provide onboarding guides to increase adoption of the application.

We are grateful to the Ethereum Foundation for coordinating the ZK Grants Round and to the teams who submitted proposals. We look forward to seeing how the Noir community leverages these tools and resources to build the next wave of ZK powered applications.

If you’d like to learn more about Noir, read our docs and follow @NoirLang for more contribution opportunities coming soon.

Aztec Network
Aztec Network
11 Mar
xx min read

Client-side Proof Generation

TL;DR

The proof generation for a privacy-preserving zk-rollup differs a lot from that of a general-purpose zk-rollup. The reason for this is that there is specific data in a given transaction (processed by private functions) that we want to stay completely private. In this article, we explore the client-side proof generation used for proving private functions’ correct execution and explain how it differs from proof generation in general-purpose rollups.

Contents

  • What proofs are and how they work in general-purpose zk-rollups
  • How proofs work in Aztec
  • Proving functions’ correct execution
  • For public functions: rollup-side proof generation
  • For private functions: client-side proof generation
  • An example proof
  • How client-side proof generation decreases memory requirements
  • Appendix: other details of client-side proof generation.
  • Summary

What proofs are and how they work in general-purpose zk-rollups

Disclaimer: If you’re closely familiar with how zk-rollups work, feel free to skip this section.

Before we dive into proofs on Aztec, specifically the privacy-first nature of Aztec’s zk-rollup, let’s recap how proofs work on general-purpose zk-rollups.

When a stateful blockchain executes transactions, it conducts a state transition. If the state of the network was originally A, then a set of transactions (a block) is executed on the network, the state of the network is now B.

Rollups are stateful blockchains as well. They use proofs to ensure that the state transition was executed correctly. The proof is generated and verified for every block. All proofs are posted on L1, and anyone can re-verify them to ensure that the state transition was done correctly.

For a general-purpose zk-rollup, proof generation is very straightforward, as all data is public. Both the sequencer and the prover see all the transaction data, public states are public, and the data necessary to reconstruct each state transition is posted on L1.

How proofs work in Aztec

Aztec’s zk-rollups are a different story. As we mentioned in the previous article, in the Aztec network, there are two types of state: public and private.

Aztec smart contracts (written in Noir) are composed of two types of functions: private and public.

  • Private functions – user-owned state, client-side proof generation
  • Public functions – global/public state, rollup-side proof generation

For both of these, we need proof of correct execution. However, as the anatomy of private and public functions is pretty different, their proof generation is pretty different too.

As a brief overview of how Aztec smart contracts are executed: first, all private functions are executed and then all public functions are executed.

However, diving into the anatomy of Aztec smart contracts is outside the scope of this piece. To learn more about it, check the previous article.

Here, we will focus on the correct proof generation execution of private functions and why it is a crucial element of a privacy-first zk-rollup.

The concepts of private state and private functions in blockchain might seem a little unusual. The following map describes the path of this article, where we will shed some light on the difference between how proofs work for private and public states respectively.

Proving functions’ correct execution

For public functions: rollup-side proof generation

Let’s start by looking at public function execution, as it is more similar to other general-purpose zk-rollups.

Public state is the global state available to everyone. The sequencer executes public functions, while the prover generates the correct execution proof. In particular, the last step means that the function (written in Noir) is compiled in a specific type of program representation, which is then evaluated by a virtual machine (VM) circuit. Evaluated means that it will execute the set of instructions one by one, resulting in either a proof of correct execution or failure. The rollup-side prover can handle heavy computation as it is run on powerful hardware (i.e. not a smartphone or a computer browser as in the client-side case).

For private functions: client-side proof generation

Private state on the other hand is owned by users. When generating proof of a private transaction's correct execution, we want all data to stay private. It means we can’t have a third-party prover (as in the case of public state) because data would be subsequently exposed to the prover and thus no longer be private.

In the case of a private transaction, the transaction owner (the only one who is aware of the transaction data) should generate the proof on their own. That is, the proof of a private transaction's correct execution has to be generated client-side.

That means that every Aztec network user should be able to generate a proof on their smartphone or laptop browser. Furthermore, as an Aztec smart contract might be composed of a number of private functions, every Aztec network user should be able to generate a number of proofs (one proof for each private function).

On the rollup side, block proofs are generated using ZK-VM (ZK virtual machine). On the private side, there is no VM.

Instead, each private function is compiled into a static circuit on its own.

When we say “a circuit”, we’re referring to a table with some precomputed values filled in. This table describes the sequence of instructions (like MUL and ADD) to be executed during a particular run of the code.

There are a bunch of predefined relations between the rows and columns of the table, for example, copy constraints that state that the values of a number of wires are expected to be the same.

Let’s take a look at a quick example:

In the diagram above, we have two gates, Gate 1 (+) and Gate 2 (x). As we can see, z is both the output of Gate 1 (denoted as w3, wire 3) and the left input to Gate 2 (denoted as w4, wire 4). So, we need to ensure that the value of the output of Gate 1 is the same as the value of the left input of Gate 2. That is, that w3 = w4. That’s exactly what we call “checking copy constraints”.

When we say that the verifier verifies the circuit, we mean it checks that these predefined relations hold for all rows and columns.

An example proof

Disclaimer: the following example reflects the general logic in a simplified way. The real functions are much more complex.

Assume we have a function a2+b2=c2. The goal is to prove that equality holds for specific inputs and outputs. Assume a = 3, b = 4, c = 5.

As a piece of code, we can represent the function as the following:

When the function is executed, the result of each step is written down in a table. When this table is filled with the results of the specific function execution on specific values, it’s called an execution trace.

This is just a fragment of the table, with values and opcode names. However, to instruct the computer about which operation should be executed in which specific row, the opcode name is not enough; we need selectors.

Selectors are gates that refer to toggling operations (like an on/off switch). In our example, we will use a simplified Plonk equation with two selectors: qADD for the addition gate and qMUL for the multiplication gate. The simplified Plonk equation is: qMUL(a*b)+qADD(a+b)-c=0.

Turning them on and off, that is, assigning values 1 and 0, the equation will transform into different operations. For example, to perform the addition of a and b, we put qADD= 1, qMUL=0, so the equation is a+b-c =0.

So, for each performed operation, we also store in the table its selectors:

How client-side proof generation decrease memory requirements

In the case of private functions, as each function is compiled into a static circuit, all the required selectors are put into the table in advance. In particular, when the smart contract function is compiled, it outputs a verification key containing a set of selectors.

In the case of a smart contract, the circuit is orders of magnitude larger as it contains more columns with selectors for public function execution. Furthermore, there are more relation checks to be done. For example, one needs to check that the smart contract bytecode really does what it is expected to do (that is, that the turned selectors are turned according to the provided bytecode commitment).

As a mental model, you can think about a smart contract circuit as a table where 50 out of 70 columns are reserved for the selectors' lookup table. Storing the entire table requires a lot of memory.

Now you see the difference between circuit size for client-side and rollup-side proof generation: on the client-side, circuits are much smaller with lower memory and compute requirements. This is one of the key reasons why the proofs of private functions' correct execution can be generated on users’ devices.

Appendix: other details of client-side proof generation

  • To further decrease memory and computation requirements for the prover, we use a specific proving system, Honk, which is a highly optimized Plonk developed by Aztec Labs. Honk is a combination of Plonk-ish arithmetization, the sum-check protocol (which has some nice memory tricks), and a multilinear polynomial commitment scheme.
  • Some gadgets that may be added to Honk to make it even more efficiet include Goblin Plonk, a specific type of recursion developed by Aztec Labs, and ProtoGalaxy, developed by Liam Eagen and Ariel Gabizon.
  • Goblin Plonk allows a resource-constrained prover to construct a zk-snark with multiple layers of recursion. That perfectly fits the case of client-side proof generation, where a proof of each private function in a smart contract is an additional layer of the recursion. The trick is that expensive operations (such as Elliptic Curve operations) at each recursion layer are postponed to the last step instead of being executed at each. The recursion ends in one single proof for all the private functions in a smart contract.
  • This proof is then verified by the rollup circuit. The recursive verification of this proof is pretty resource intensive. However, as it is performed rollup-side, it has enough computation and memory resources.
  • ProtoGalaxy is a folding scheme that optimizes the recursive verifier work. It allows for folding multiple instances in one step, decreasing the verifier’s work in each folding step to a constant.
  • Diving into Honk and its optimizations is outside the scope of this article, but we promise to cover it soon in upcoming pieces.

Summary

Client-side proof generation is a pretty novel approach for the blockchain domain. However, for privacy-preserving solutions, it is an absolute must-have. Aztec Labs has spent years developing the protocol and cryptography architecture that make client-side proof generation performance feasible for the production stage.

You can help build it further.