Aztec Network
29 Aug
## min read

From zero to nowhere: smart contract programming in Huff (2/4)

Follow the journey of smart contract programming in Huff, offering unique insights into this coding language.

Share
Written by
Zac Williamson
Edited by

Hello there!

This is the second article in a series on how to write smart contracts in Huff.

Huff is a recent creation that has rudely inserted itself into to the panoply of Ethereum smart contract-programming languages. Barely a language, Huff is more like an assembler that can manage a few guttural yelps, that could charitably be interpreted as some kind of syntax.

I created Huff so that I could write an efficient elliptic curve arithmetic contract called Weierstrudel, and reduce the costs of zero-knowledge cryptography on Ethereum. So, you know, a general purpose language that will take the world by storm at any moment…

But hey, I guess it can be used to write an absurdly over-optimised ERC20 contract as well.

So let’s dive back into where we left off.

Prerequisites

  • Part 1 of this series
  • Knowledge of Solidity inline assembly
  • A large glass of red wine. Huff’s Ballmer peak is extremely high, so a full-bodied wine is ideal. A Malbec or a Merlot will also balance out Huff’s bitter aftertaste, but vintage is more important than sweetness here.

Difficulty rating: (medium Huff)

Getting back into the swing of things: Transfer

We left off in the previous article with the skeletal structure of our contract, which is great! We can jump right into the fun stuff and start programming some logic.

We need to implement the functionality function transfer(address to, uint256 value) public returns (bool). Here’s a boilerplate Solidity implementation of transfer

function transfer(address to, uint256 value) public returns (bool) {
  balances[msg.sender] = balances[msg.sender].sub(value);
  balances[to] = balances[to].add(value);
  emit Transfer(from, to, value);
  return true;
}

Hmm. Well, this is awkward. We need to access some storage mappings and emit an event.

Huff doesn’t have mappings or events.

Okay, let’s take a step back. An ERC20 token represents its balances by mapping address to an integer: mapping(address => uint) balances. But…Huff does not have types (Of course Huff doesn’t have types, type checking is expensive! Well, it’s not free, sometimes, so it had to go).

In order to emulate this, we need to dig under the hood and figure out how Solidity represents mappings, with hashes.

Breaking down a Solidity mapping

Smart contracts store data via the sstore opcode — which takes a pointer to a storage location. Each storage location can contain 32 bytes of data, but these locations don’t have to be linear (unlike memory locations, which are linear).

Mappings work by combining the mapping key with the storage slot of the mapping, and hashing the result. The result is a 32 byte storage pointer that unique both to the key being used, and the mapping variable in question.

So, we can solve this problem by implement mappings from scratch! The Transfer event requires address from, address to, uint256 value. We’ll deal with the event at the end of this macro, but given that we will be re-using the from, to, value variables a lot, we might as well throw them on the stack. What could go wrong?

Initialising the stack

Before we start cutting some code, let’s map out the steps our method has to perform:

  1. Increase balance[to] by value
  2. Decrease balance[msg.sender] by value
  3. Error checking
  4. Emit the Transfer(from, to, value) event
  5. Return true

When writing an optimised Huff macro, we need to think strategically about how to perform the above in order to minimise the number of swap opcodes that are required.

Specifically, the variables from and to are located in calldata, the data structure that stores input data sent to the smart contract. We can load a word of calldata via calldataload. The calldataload opcode has one input, the offset in calldata that we’re loading from, meaning it costs 6 gas to load a word of calldata.

It only costs 3 gas to duplicate a variable on the stack, so we only want to load from calldata once and re-use variables with the dup opcode.

Because the stack is a last-in-first-out structure, the first variables we load onto the stack will be consumed by the last bit of logic in our method.

The last ‘bit of logic’ we need is the event that we will be emitting, so let’s deal with how that will work.

Huff and events

Imagine we’re almost done implementingtransfer(address to, uint256 value) public returns (bool), the only minor issue is that we need to emit an event, Transfer(address indexed from, address indexed to, uint256 value).

…I have a confession to make. I’ve never written a Huff contract that emits events. Still, there’s a first time for everything yes?

Events have two types of data associated with them, topics and data.

Topics are what get created when an event parameter has the indexed prefix. Instead of storing the parameter address indexed from in the event log, the keccak256 hash of from is used as a database lookup index.

i.e. When searching the event logs, you can pull out all Transfer events that contained a given address in the from or to field. But if you look at a bunch of Transfer event logs, you won’t be able to identify which address was used as the from or to field by looking at the log data.

Our event Transfer has three topics, despite only having two indexed parameters. The event signature is also a topic (a keccak256 hash of the event string, it’s like a function signature).

Digging around in Remix, this is the event signature:

0xDDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EF. Just rolls off the tongue doesn’t it?

So we know what we need to do with indexed data — just supply the ‘topics’ on the stack. Next, how does an event log non-indexed data?

Taking a step back, there are five log opcodes: log0, log1, log2, log3, log4. These opcodes describe the number of indexed parameters in each log.

We want log3. The interface for the log3 opcode is log3(p1, p2, a, b, c). Memory p1 to p1+p2 contains the log data, and a, b, c represent the log topics.

i.e. we want log3(p1, p2, event_signature, from, to). The values from, to, event_signature are going to be the last variables consumed on our stack, so they must be the first variables we add to it at the start of our program.

Finally, we’re in a position to write some Huff code, oh joy. Here it is:

0x04 calldataload
caller0xDDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EF

Next up, we need to define the memory that will contain value. That’s simple enough — we’ll be storing value at memory position 0x00, so p1=0x00 and p2=0x20. Giving us

0x04 calldataload
caller
0xDDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EF
0x20
0x00

Finally, we need value, so that we can store it in memory for log3. We will execute the mstore opcode at the end of our method, so that we can access value from the stack for the rest of our method. For now, we just load it onto the stack:

0x04 calldataload
caller
0xDDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EF
0x20
0x00
0x24 calldataload

One final thing: we have assumed that 0x04 calldataload will map to address to. But 0x04 calldataload loads a 32-byte word onto the stack, and addresses are only 20 bytes! We need to mask the 12 most-significant bytes of 0x04 calldataload, in case the transaction sender has added non-zero junk into those upper 12 bytes of calldata.

We can fix this by calling 0x04 calldataload 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff and.

Actually, let’s make a macro for that, and one for our event signature to keep it out of the way:

#define macro ADDRESS_MASK = takes(1) returns(1) {
0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff
and
}

#define macro TRANSFER_EVENT_SIGNATURE = takes(0) returns(1) {
0xDDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EF
}

The final state of our ‘initialisation’ macro is this:#define macro ERC20__TRANSFER_INIT = takes(0) returns(6) {  0x04 calldataload ADDRESS_MASK()  caller  TRANSFER_EVENT_SIGNATURE()  0x20  0x00  0x24 calldataload}

Updating balances[to]

Now that we’ve set up our stack, we can proceed iteratively through our method’s steps (you know, like a normal program…).

To increase balances[to], we need to handle mappings. To start, let’s get our mapping key for balances[to]. We need to place to and the storage slot unique to balances linearly in 64 bytes of memory, so we can hash it:

// stack state:
// value 0x20 0x00 signature from to
dup6 0x00 mstore
BALANCE_LOCATION() 0x20 mstore
0x40 0x00 sha3

In the functional style, sha3(a, b) will create a keccak256 hash of the data in memory, starting at memory index aand ending at index a+b.

Notice how our ‘mapping’ uses 0x40 bytes of memory? That’s why the ‘free memory pointer’ in a Solidity contract is stored at memory index 0x40 — the first 2 words of memory are used for hashing to compute mapping keys.

Optimizing storage pointer construction

I don’t know about you, but I’m not happy with this macro. It smells…inefficient. In part 1, when we set BALANCE_LOCATION() to storage slot 0x00, we did that on purpose! balances is the most commonly used mapping in an ERC20 contract, and there’s no point storing 0x00 in memory. Smart contract memory isn’t like normal memory and uninitialised — all memory starts off initialised to 0x00. We can scrap that stuff, leaving:

// stack state:
// value 0x20 0x00 signature from to
dup6 0x00 mstore
0x40 0x00 sha3

Note that if our program has previously stored something at index 0x20, we will compute the wrong mapping key.

But this is Huff; clearly the solution is to just never use more than 32 bytes of memory for our entire program. What are we, some kind of RAM hog?

Setting storage variables

Next, we’re going to update balances[to]. To start, we need to load up our balance and duplicate value, in preparation to add it to balances[to].

// stack state:
// key(balances[to]) value 0x20 0x00 signature from to
dup1 sload
dup3

Now, remember that MATH__ADD macro we made in part 1? We can use it here! See, Huff makes programming easy with plug-and-play macros! What a joy.

// stack state:
// key(balances[to]) value 0x20 0x00 signature from to
dup1 sload
dup3MATH_ADD()

…wait. I said we could use MATH__ADD, not that we were going to. I don’t like how expensive this code is looking and I think we can haggle.

Specifically, let’s look at that MATH__ADD macro:

template #define macro MATH__ADD = takes(2) returns(1) { // stack state: a b dup2 add // stack state: (a+b) a dup1 swap2 gt // stack state: (a > (a+b)) (a+b) jumpi }

Remember how, well, optimised, our macro seemed in part 1? All I see now is a bloated gorgon feasting on wasted gas with opcodes dribbling down its chin. Disgusting!

First off, we don’t need that swap2 opcode. Our original macro consumed a from the stack because that variable wasn’t needed anymore. But… a is uint256 value, and we do need it for later — we can replace dup1 swap2 with a simple dup opcode.

But there’s a larger culprit here that needs to go, that jumpi opcode.

Combining error codes

The transfer function has three error tests it must perform: the two safemath checks when updating balances[from] and balances[to], and validating that callvalue is 0.

If we were to implement this naively, we would end up with three conditional jump instructions and associated opcodes to set up jump labels. That’s 48 gas. Quite frankly, I’d rather put that gas budget towards another Malbec, so let’s start optimising.

Instead of directly invoking a jumpi instruction against our error test, let’s store it for later. We can combine all of our error tests into a single test and only onejumpi instruction. Putting this into action, let’s compute the error condition, but leave it on the stack:

// stack state:
// key(balances[to]) value 0x20 0x00 signature from to
dup1 sload // balances[to]
dup3       // value balances[to]
add        // value+balances[to]
dup1       // value+balances[to] value+balances[to]
dup4       // value v+b v+b
gt         // error_code value+balances[to]

Finally, we need to store value+balances[to] at the mapping key we computed previously. We need key(balances[to]) to be in front of value+balances[to], which we can perform with a simple swap opcode:

#define macro ERC20__TRANSFER_TO = takes(6) returns(7) {
// stack state:
// value 0x20 0x00 signature from to
dup6 0x00 mstore
0x40 0x00 sha3
dup1 sload // balances[to] key(balances[to]) ...
dup3       // value balances[to] ...
add        // value+balances[to] ...
dup3       // value value+balances[to] ...
gt         // error_code value+balances[to] key(balances[to])
swap2      // key(balances[to]) value+balances[to} error_code
sstore     // error_code ...
}

And that’s it! We’re done with updating balances[to]. What a breeze.

Updating balances[from]

Next up, we need to repeat that process for balances[from], pillaging the parts of MATH__SUB that are useful.

#define macro ERC20__TRANSFER_FROM = takes(7) returns(8) {
// stack state:
// error_code, value, 0x20, 0x00, signature, from, to
caller 0x00 mstore
0x40 0x00 sha3
dup1 sload // balances[from], key(balances[from]), error_code,...
dup4 dup2 sub // balances[from]-value, balances[from], key, e,...
dup5 swap3 // key, balances[from]-value, balances[from], value
sstore     // balances[from], value, error_code, value, ...
lt         // error_code_2, error_code, value, ...
}

Now that we have both of our error variables on the stack, we can perform our error test! In addition to the two error codes, we want to test whether callvalue> 0. We don’t need gt(callvalue,0) here, any non-zero value of callvalue will trigger our jumpi instruction to jump.

callvalue or or jumpi

What an adorable little line of Huff.

Emitting Transfer(from, to, value)

The penultimate step in our method is to emit that event. Our stack state at this point is where we left it after ERC20__TRANSFER_INIT, so all we need to do is store value at memory index 0x00 and call the log3 opcode.

// stack state:
// value, 0x20, 0x00, event_signature, from, to
0x00 mstore log3

Finally, we need to return true (i.e. 1). We can do that by storing 0x01 at memory position 0x00 and calling return(0x00, 0x20)

Putting it all together…

At long last, we have our transfer method! It’s this…thing

#define macro OWNER_LOCATION = takes(0) returns(1) {
0x01
}

#define macro ADDRESS_MASK = takes(1) returns(1) {
0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff
and
}

#define macro TRANSFER_EVENT_SIGNATURE = takes(0) returns(1) {
0xDDF252AD1BE2C89B69C2B068FC378DAA952BA7F163C4A11628F55A4DF523B3EF
}

#define macro ERC20 = takes(0) returns(0) {
caller OWNER_LOCATION() mstore
}

#define macro ERC20__TRANSFER_INIT = takes(0) returns(6) {
0x04 calldataload ADDRESS_MASK()
caller
TRANSFER_EVENT_SIGNATURE()
0x20
0x00
0x24 calldataload
}

#define macro ERC20__TRANSFER_GIVE_TO = takes(6) returns(7) {
// stack state:
// value, 0x20, 0x00, signature, from, to
dup6 0x00 mstore
0x40 0x00 sha3
dup1 sload // balances[to], key(balances[to]), ...
dup3       // value, balances[to], ...
add        // value+balances[to], ...
dup1       // value+balances[to], value+balances[to], ...
dup4       // value value+balances[to] ...
gt         // error_code, value+balances[to], key(balances[to])
swap2      // key(balances[to]), value+balances[to}, error_code
sstore     // error_code, ...
}

#define macro ERC20__TRANSFER_TAKE_FROM = takes(7) returns(8) {
// stack state:
// error_code, value, 0x20, 0x00, signature, from, to
caller 0x00 mstore
0x40 0x00 sha3
dup1 sload // balances[from], key(balances[from]), error_code,...
dup4 dup2 sub // balances[from]-value, balances[from], key, e,...
dup5 swap3 // key, balances[from]-value, balances[from], value
sstore     // balances[from], value, error_code, value, ...
lt         // error_code_2, error_code, value, ...
}

template #define macro ERC20__TRANSFER = takes(0) returns(0) { ERC20__TRANSFER_INIT() ERC20__TRANSFER_TO() ERC20__TRANSFER_FROM() callvalue or or jumpi 0x00 mstore log3 0x01 0x00 mstore 0x20 0x00 return }

Wasn’t that fun?

I think that’s a reasonable place to end this article. In the next chapter, we’ll deal with how to handle ERC20 allowances in a Huff contract.

Cheers,

Zac.

Click here for part 3

Read more
Aztec Network
Aztec Network
30 Jan
xx min read

Aztec Ignition Chain Update

In November 2025, the Aztec Ignition Chain went live as the first decentralized L2 on Ethereum. Since launch, more than 185 operators across 5 continents have joined the network, with 3,400+ sequencers now running. The Ignition Chain is the backbone of the Aztec Network; true end-to-end programmable privacy is only possible when the underlying network is decentralized and permissionless. 

Until now, only participants from the $AZTEC token sale have been able to stake and earn block rewards ahead of Aztec's upcoming Token Generation Event (TGE), but that's about to change. Keep reading for an update on the state of the network and learn how you can spin up your own sequencer or start delegating your tokens to stake once TGE goes live.

Block Production 

The Ignition Chain launched to prove the stability of the consensus layer before the execution environment ships, which will enable privacy-preserving smart contracts. The network has remained healthy, crossing a block height of 75k blocks with zero downtime. That includes navigating Ethereum's major Fusaka upgrade in December 2025 and a governance upgrade to increase the queue speed for joining the sequencer set.

Source: AztecBlocks

Block Rewards

Over 30M $AZTEC tokens have been distributed to sequencers and provers to date. Block rewards go out every epoch (every 32 blocks), with 70% going to sequencers and 30% going to provers for generating block proofs.

If you don't want to run your own node, you can delegate your stake and share in block rewards through the staking dashboard. Note that fractional staking is not currently supported, so you'll need 200k $AZTEC tokens to stake.

Global Participation  

The Ignition Chain launched as a decentralized network from day one. The Aztec Labs and Aztec Foundation teams are not running any sequencers on the network or participating in governance. This is your network.

Anyone who purchased 200k+ tokens in the token sale can stake or delegate their tokens on the staking dashboard. Over 180 operators are now running sequencers, with more joining daily as they enter the sequencer set from the queue. And it's not just sequencers: 50+ provers have joined the permissionless, decentralized prover network to generate block proofs.

These operators span the globe, from solo stakers to data centers, from Australia to Portugal.

Source: Nethermind 

Node Performance

Participating sequencers have maintained a 99%+ attestation rate since network launch, demonstrating strong commitment and network health. Top performers include P2P.org, Nethermind, and ZKV. You can see all block activity and staker performance on the Dashtec dashboard. 

How to Join the Network 

On January 26th, 2026, the community passed a governance proposal for TGE. This makes tokens tradable and unlocks the AZTEC/ETH Uniswap pool as early as February 11, 2026. Once that happens, anyone with 200k $AZTEC tokens can run a sequencer or delegate their stake to participate in block rewards.

Here's what you need to run a validator node:

  • CPU: 8 cores
  • RAM: 16 GB
  • Storage: 1 TB NVMe SSD
  • Bandwidth: 25 Mbps

These are accessible specs for most solo stakers. If you've run an Ethereum validator before, you're already well-equipped.

To get started, head to the Aztec docs for step-by-step instructions on setting up your node. You can also join the Discord to connect with other operators, ask questions, and get support from the community. Whether you run your own hardware or delegate to an experienced operator, you're helping build the infrastructure for a privacy-preserving future.

Solo stakers are the beating heart of the Aztec Network. Welcome aboard.

Aztec Network
Aztec Network
22 Jan
xx min read

The $AZTEC TGE Vote: What You Need to Know

The TL:DR:

  • The $AZTEC token sale, conducted entirely onchain concluded on December 6, 2025, with ~50% of the capital committed coming from the community. 
  • Immediately following the sale, tokens could be withdrawn from the sale website into personal Token Vault smart contracts on the Ethereum mainnet.
  • The proposal for TGE (Token Generation Event) is now live, and sequencers can start signaling to bring the proposal to a vote to unlock these tokens and make them tradeable. 
  • Anyone who participated in the token sale can participate in the TGE vote. 

The $AZTEC token sale was the first of its kind, conducted entirely onchain with ~50% of the capital committed coming from the community. The sale was conducted completely onchain to ensure that you have control over your tokens from day one. As we approach the TGE vote, all token sale participants will be able to vote to unlock their tokens and make them tradable. 

What Is This Vote About?

Immediately following the $AZTEC token sale, tokens could be withdrawn from the sale website into your personal Token Vault smart contracts on the Ethereum mainnet. Right now, token holders are not able to transfer or trade these tokens. 

The TGE is a governance vote that decides when to unlock these tokens. If the vote passes, three things happen:

  1. Tokens purchased in the token sale become fully transferable 
  2. Trading goes live for the Uniswap v4 pool
  3. Block rewards become transferable for sequencers

This decision is entirely in the hands of $AZTEC token holders. The Aztec Labs and Aztec Foundation teams, and investors cannot participate in staking or governance for 12 months, which includes the TGE governance proposal. Team and investor tokens will also remain locked for 1 year and then slowly unlock over the next 2 years. 

The proposal for TGE is now live, and sequencers are already signaling to bring the proposal to a vote. Once enough sequencers have signaled, anyone who participated in the token sale will be able to connect their Token Vault contract to the governance dashboard to vote. Note, this will require you to stake/unstake and follow the regular 15-day process to withdraw tokens.

If the vote passes, TGE can go live as early as February 12, 2026, at 7am UTC. TGE can be executed by the first person to call the execute function to execute the proposal after the time above. 

How Do I Participate?

If you participated in the token sale, you don't have to do anything if you prefer not to vote. If the vote passes, your tokens will become available to trade at TGE. If you want to vote, the process happens in two phases:

Phase 1: Sequencer Signaling

Sequencers kick things off by signaling their support. Once 600 out of 1,000 sequencers signal, the proposal moves to a community vote.

Phase 2: Community Voting

After sequencers create the proposal, all Token Vault holders can vote using the voting governance dashboard. Please note that anyone who wants to vote must stake their tokens, locking their tokens for at least 15 days to ensure the proposal can be executed before the voter exits. Once signaling is complete, the timeline is as follows:

  • Days 1–3: Waiting period 
  • Days 4–10: Voting period (7 days to cast your vote)
  • Days 11–17: Execution delay
  • Days 18–24: Grace period to execute the proposal

Vote Requirements:

  • At least 100M tokens must participate in the vote. This is less than 10% of the tokens sold in the token sale.  
  • 66% of votes must be in favor for the vote to pass.

Frequently Asked Questions

Do I need to participate in the vote? No. If you don't vote, your tokens will become available for trading when TGE goes live. 

Can I vote if I have less than 200,000 tokens? Yes! Anyone who participated in the token sale can participate in the TGE vote. You'll need to connect your wallet to the governance dashboard to vote. 

Is there a withdrawal period for my tokens after I vote? Yes. If you participate in the vote, you will need to withdraw your tokens after voting. Voters can initiate a withdrawal of their tokens immediately after voting, but require a standard 15-day withdrawal period to ensure the vote is executed before voters can exit.

If I have over 200,000 tokens is additional action required to make my tokens tradable after TGE? Yes. If you purchased over 200,000 $AZTEC tokens, you will need to stake your tokens before they become tradable. 

What if the vote fails? A new proposal can be submitted. Your tokens remain locked until a successful vote is completed, or the fallback date of November 13, 2026, whichever happens first.

I'm a Genesis sequencer. Does this apply to me? Genesis sequencer tokens cannot be unlocked early. You must wait until November 13, 2026, to withdraw. However, you can still influence the vote by signaling, earn block rewards, and benefit from trading being enabled.

Where to Learn More

This overview covers the essentials, but the full technical proposal includes contract addresses, code details, and step-by-step instructions for sequencers and advanced users. 

Read the complete proposal on the Aztec Forum and join us for the Privacy Rabbit Hole on Discord happening this Thursday, January 22, 2026, at 15:00 UTC. 

Follow Aztec on X to stay up to date on the latest developments.

Aztec Network
Aztec Network
6 Dec
xx min read

$AZTEC TGE: Next Steps For Holders

The TL;DR: 

The $AZTEC token sale was conducted entirely onchain to maximize transparency and fair distribution. Next steps for holders are as follows:

  1. Step 1: Create your Token Vault on the sale website. Your Token Vault will keep your tokens secure on Ethereum, keep them non-transferable until TGE, allow you to stake/delegate/participate in governance, and then withdraw them to your wallet after TGE.
  1. Step 2: Staking and Earning Block Rewards. If you have more than 200,000 tokens, you can start staking today on the staking dashboard
  1. Step 3: Token sale participants can vote for TGE as early as February 11th, 2026, at which 100% of tokens from the sale become transferable, and a Uniswap V4 pool goes live. 

The $AZTEC token sale has come to a close– the sale was conducted entirely onchain, and the power is now in your hands. Over 16.7k people participated, with 19,476 ETH raised. A huge thank you to our community and everyone who participated– you all really showed up for privacy. 50% of the capital committed has come from the community of users, testnet operators and creators!

Now that you have your tokens, what’s next? This guide walks you through the next steps leading up to TGE, showing you how to withdraw, stake, and vote with your tokens.

Step 1: Creating a Token Vault 

The $AZTEC sale was conducted onchain to ensure that you have control over your own tokens from day 1 (even before tokens become transferable at TGE). 

The team has no control over your tokens. You will be self-custodying them in a smart contract known as the Token Vault on the Ethereum mainnet ahead of TGE. 

Your Token Vault contract will: 

  • Keep your tokens secure on the Ethereum mainnet.
  • Ensure tokens remain non-transferable until TGE.
  • Allows you to stake, delegate, and take part in governance.
  • After TGE, you can withdraw your tokens to your wallet.

To create and withdraw your tokens to your Token Vault, simply go to the sale website and click on ‘Create Token Vault.’ Any unused ETH from your bids will be returned to your wallet in the process of creating your Token Vault. 

Step 2: Staking and Earning Block Rewards 

If you have 200,000+ tokens, you are eligible to start staking and earning block rewards today. 

You can stake by connecting your Token Vault to the staking dashboard, just select a provider to delegate your stake. Alternatively, you can run your own sequencer node.

If your Token Vault holds 200,000+ tokens, you must stake in order to withdraw your tokens after TGE. If your Token Vault holds less than 200,000 tokens, you can withdraw without any additional steps at TGE

Fractional staking for anyone with less than 200,000 tokens is not currently supported, but multiple external projects are already working to offer this in the future. 

Step 3: TGE 

TGE is triggered by an onchain governance vote, which can happen as early as February 11th, 2026. 

At TGE, 100% of tokens from the token sale will be transferable. Only token sale participants and genesis sequencers can participate in the TGE vote, and only tokens purchased in the sale will become transferrable. 

How does the voting process work? 

Community members discuss potential votes on the governance forum. If the community agrees, sequencers signal to start a vote with their block proposals. Once enough sequencers agree, the vote goes onchain for eligible token holders. 

Voting lasts 7 days, requires participation of at least 100,000,000 $AZTEC tokens, and passes if 2/3 vote yes.

What happens when the vote passes? 

Following a successful yes vote, anyone can execute the proposal after a 7-day execution delay, triggering TGE. 

At TGE, the following tokens will be 100% unlocked and available for trading: 

  • All tokens in Token Vaults that belong to token sale participants.
  • Accumulated block rewards for anyone staking.
  • Uniswap V4 pool. This pool will have 273,000,000 $AZTEC tokens and a matching ETH amount at the final clearing price. 

Join us Thursday, December 11th at 3 pm UTC for the next Discord Town Hall–AMA style on next steps for token holders. Follow Aztec on X to stay up to date on the latest developments.

Aztec Network
Aztec Network
13 Nov
xx min read

The ticker is $AZTEC

We invented the math. We wrote the language. Proved the concept and now, we’re opening registration and bidding for the $AZTEC token today, starting at 3 pm CET. 

The community-first distribution offers a starting floor price based on a $350 million fully diluted valuation (FDV), representing an approximate 75% discount to the implied network valuation (based on the latest valuation from Aztec Labs’ equity financings). The auction also features per-user participation caps to give community members genuine, bid-clearing opportunities to participate daily through the entirety of the auction. 

How to Check Eligibility and Submit Your Bid 

The token auction portal is live at: sale.aztec.network

  • This is the only valid link to the $AZTEC token auction site. Be cautious of phishing scams. No one from the Aztec team will ever contact you directly for seed phrase or private keys. 
  • Visit the site to verify your eligibility and mint a soul-bound NFT that confirms your participation rights. 
  • We have incorporated zero-knowledge proofs into the sale smart contracts by using ZKPassport's Noir circuits to ensure compliant sanctions checks without risking the privacy of our users. 
  • Registration and bidding for early contributors start today, November 13th, at 3 PM CET, with early contributors receiving one day of exclusive access before bidding opens to the general public.
  • The public auction will run from December 2nd, 2025, to December 6th, 2025, at which point tokens can be withdrawn and staked.

Why Are We Doing This? 

We’ve taken the community access that made the 2017 ICO era great and made it even better. 

For the past several months, we've worked closely with Uniswap Labs as core contributors on the CCA protocol, a set of smart contracts that challenge traditional token distribution mechanisms to prioritize fair access, permissionless, on-chain access to community members and the general public pre-launch. This means that on day 1 of the unlock, 100% of the community's $AZTEC tokens will be unlocked.

This model is values-aligned with our Core team and addresses the current challenges in token distribution, where retail participants often face unfair disadvantages against whales and institutions that hold large amounts of money. 

Early contributors and long-standing community members, including genesis sequencers, OG Aztec Connect users, network operators, and community members, can start bidding today, ahead of the public auction, giving those who are whitelisted a head start and early advantage for competitive pricing. Community members can participate by visiting the token sale site to verify eligibility and mint a soul-bound NFT that confirms participation rights. 

To read more about Aztec’s fair-access token sale, visit the economic and technical whitepapers and the token regulatory report.

Discount Price Disclaimer: Any reference to a prior valuation or percentage discount is provided solely to inform potential purchasers of how the initial floor price for the token sale was calculated. Equity financing valuations were determined under specific circumstances that are not comparable to this offering. They do not represent, and should not be relied upon as, the current or future market value of the tokens, nor as an indication of potential returns. The price of tokens may fluctuate substantially, the token may lose its value in part or in full, and purchasers should make independent assessments without reliance on past valuations. No representation or warranty is made that any purchaser will achieve profits or recover the purchase price.

Information for Persons in the UK: This communication is directed only at persons outside the UK. Persons in the UK are not permitted to participate in the token sale and must not act upon this communication.

MiCA Disclaimer: Any crypto-asset marketing communications made from this account have not been reviewed or approved by any competent authority in any Member State of the European Union. Aztec Foundation as the offeror of the crypto-asset is solely responsible for the content of such crypto-asset marketing communications. The Aztec MiCA white paper has been published and is available here. The Aztec Foundation can be contacted at hello@aztec.foundation or +41 41 710 16 70. For more information about the Aztec Foundation, visit https://aztec.foundation.